虚拟化技术原理与实现在线阅读
会员

虚拟化技术原理与实现

广小明等编著
开会员,本书免费读 >

计算机网络人工智能9.6万字

更新时间:2018-12-27 18:20:27 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

本书对云计算中关键技术之一的虚拟化技术进行了深入的分析,从x86计算机体系结构以及操作系统的工作原理出发,介绍了虚拟化技术原理以及业界主流虚拟化软件产品,并以Xen、KVM开源软件为例分析了虚拟化软件的架构及其实现方法,最后对虚拟化软件管理接口的工作原理以及实现方法进行了全面的梳理。
上架时间:2012-10-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

广小明等编著
主页

最新上架

  • 会员
    本书介绍提示工程的基本概念和实践,旨在帮助读者了解如何构建高质量的提示内容。内容包括:认识大语言模型、ChatGPT应用体验、ChatGPTAPI、PythonChatGPTAPI库、提示工程、提示类型、基于提示工程应用Python数据分析等。
    兰一杰 于辉计算机14万字
  • 会员
    (1)AI与AIGC基础知识:从基础入手,深入讲解AI技术的基本概念和原理。通过通俗易懂的讲解和示例,帮助读者建立坚实的理论基础,为后续章节的深入学习打下良好基础。(2)智能设备上的AIGC系统设计:详细介绍AIGC技术在实际应用过程中的各种功能设计和实现方法。内容涵盖算法选择、模型训练、系统集成等各个环节,通过丰富的技术细节和设计策略,帮助读者全面掌握AIGC技术的应用要点。(3)AIGC关键工
    刘冰计算机18万字
  • 会员
    本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书
    魏承东计算机18.2万字
  • 会员
    本书从介绍“ChatGPT第一次接触”开始,分析如何使用该工具来提高开发效率和质量。书中每一章都涵盖了ChatGPT的不同应用场景,从编写各种文档,到辅助进行需求分析和系统设计,以及数据库设计和开发高质量代码等均有讲解。还介绍了如何使用ChatGPT辅助进行系统测试以及任务管理,并对源代码底层逻辑进行了分析。
    关东升计算机8.8万字
  • 会员
    DeepSeek是一种基于Transformer架构的生成式AI(ArtificialIntelligence)大模型,融合了MoE架构、混合精度训练、分布式优化等先进技术,具备强大的文本生成、多模态处理和任务定制化能力。本书系统性地介绍了开源大模型DeepSeek-V3的核心技术及其在实际开发中的深度应用。全书分三部分共12章,涵盖理论解析、技术实现和应用实践。本书通过深度讲解与实用案例相结合
    未来智能实验室 代晶编著计算机17.1万字
  • 会员
    本书从基础的神经网络、卷积神经网络、循环神经网络等入门知识,到深度学习的应用领域如计算机视觉、自然语言处理等高级主题都有涉及,可以帮助读者更好地理解深度学习知识,并为未来的职业发展打下坚实的基础。
    段小手计算机23.6万字
  • 会员
    随着Web3.0时代的来临,我国教育领域迎来了一场全面而深刻的变革——AIGC、ChatGPT、大数据、云计算、物联网、数字孪生、元宇宙等新兴技术与教育行业的融合程度日益加深,AI驱动的教育新形态、新模式、新产品不断涌现,数字化、网络化、智能化逐渐成为引领我国教育变革与转型的重要方向。本书立足于全球范围内智慧教育领域的实践经验与前沿趋势,全面阐述AIGC、ChatGPT、元宇宙、数字孪生等新兴技
    程君青 邵立东 杨爱喜计算机13.8万字
  • 会员
    本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络
    叶翰嘉 詹德川计算机19.3万字
  • 会员
    本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle
    刘润森计算机0字